
Decoupled Drupal
Is it right for your business?

more at www.lullabot.com

https://www.lullabot.com

2

Table of Contents

PART ONE

What Is Decoupled Drupal?

You may or may not have heard of the terms “decoupling” or “headless Drupal,” but what does this actually mean? This section

will explain just that, and why this approach to content publishing is gaining in popularity among all stakeholders responsible for

content publishing.

PART TWO

Should You Decouple?

Decoupling has many benefits that can be real game changers, but it does not come without a host of challenges as well.

Understanding both and how they will affect your workflow, processes, and team, is a necessity when determining whether or not

decoupling is the right solution for your situation.

PART THREE

Case Studies from the Real World

Finally, we take a look at some real-world examples of how decoupled Drupal has helped businesses reach their goals and what was

done to help them get there.

Page 3

Page 6

Page 10

3

What is decoupled Drupal?
In the “old days” of the web, a website lived in a silo. A web page looked at least generally like a page in a

brochure or a magazine and was mostly used the same way, as a means of one-way, fairly static communication

with the users of the site.

Today, we communicate with customers in numerous ways, across multiple devices. We allow users to interact

with our site, push and pull information to social media, and respond to questions spoken into a phone. The

web has changed, and so have websites.

We must alter the way that websites are built to adjust to this new omnichannel world where a web “page”

might be an app on a phone and content might be reused across many devices and in many ways. We’re not just

creating websites anymore.

Fortunately, Drupal was designed from the beginning to be much more than a simple blogging platform, and it’s

been flexible enough to evolve as the needs and uses of a website have changed.

48% 25% 25%

browse on
multiple devices

browse on
computer only

browse on
mobile only

Stats above from Google Data, “How People Use Their Devices" 2016

4

Typically, Drupal is used to deliver all the components of a website, an approach that can be called traditional,

monolithic, or full-stack Drupal. In this scenario, Drupal provides the mechanism to create and store

structured data, includes an editorial interface that allows editors to add and edit content and set configuration,

and automatically provides the front-end markup that users see in their browsers. Drupal does it all.

“ The line between traditional and decoupled is not black and
white. There are all sorts of in-between solutions... ”

Decoupled or headless Drupal is where website functions are separated across multiple web frameworks and

environments. That could mean managing data creation and storage in a traditional Drupal installation, but

using React and Node.js to create the page markup. It could also mean using a React app as an editorial interface

for a traditional Drupal site.

The line between traditional and decoupled is not black and white. There are all sorts of in-between

solutions, like creating a traditional Drupal website that also serves up data to one or more mobile web

applications. Or using JavaScript on the front end of a traditional Drupal site to retrieve content from an

external service and inject it into the Drupal-generated markup. This in-between state is sometimes called

progressively decoupled.

Many organizations, including Netflix, have seen great benefits from a decoupled approach to content but

knowing when and if decoupling is right for your website is key.

https://www.dropbox.com/referrer_cleansing_redirect?hmac=SdHjO%2F0MKGyASDFShx4urrlLcz%2BmxP5MfcstOqSRCqE%3D&url=https%3A%2F%2Fwww.lullabot.com%2Fblog%2Fpodcasts%2Finsert-content-here%2F11-daniel-jacobson-nprs-cope-and-content-apis

5

DECOUPLEDCOUPLED

Drupal

Complete

Complete

Yes

Depends

Good

Drupal

Complete

None to Partial (additional effort)

Yes

Excellent

Possible (additional effort)

EDITORIAL ISSUES

Content management

Editorial control over content

Editorial control over layout/presentation

Content broadcasting capabilities (apps, etc.)

Suitability of content for broadcasting (apps, etc.)

Content preview capability

DECOUPLEDCOUPLED

Drupal

Average

Average

Highly Connected

Javascript, Mobile Apps, OTT, Etc.

Average to Excellent

Highly Complex

Loosely Connected

TECHNICAL ISSUES

Page display management

Page speed and performance

Technical stack complexity

Front to Back-end connection and workflow

6

Should you decouple?
Just because we can build sites in creative and new decoupled ways doesn’t mean that decoupling is the right

solution. There are many factors that should enter into that decision.

Determining whether or not you should decouple is a matter of asking the right questions and understanding

the benefits and challenges that come with it.

If the benefits apply to your situation, it’s worth investigating. But, the challenges of decoupling may rule it

out as a solution, at least for now.

DECOUPLING ADVANTAGES DECOUPLING CHALLENGES

� Support for multiple consumers

� Content reuse capabilities

� Less Drupal-specific knowledge required

� Expedited development

� Enhanced performance

� Reduced cost of future redesigns

� Increased development cost

� Increased technical complexity

� Increased risk of over-engineering

� Increased task difficulty

� Mind-set shift required

� Less page control (layout, order, etc.)

� Multi-site difficulty

� Content model lock-in

7

The Benefits of Decoupling

More and more sites are delivering content to multiple consumers, mobile apps,

TV, etc. Rather than building a website in a silo, we can create content that is

intended from the beginning to be reused in many ways. We then treat the front

end of the website as just another consumer of that content.

Content is expensive to create; decoupling is a way to reuse it, not just across

platforms, but also from website redesign to redesign. By creating a physical

separation between the content management and the website itself, it can be

easier to create content that is, in fact, reusable, and not hard-wired to the

current website design. When the content is only ever displayed on the website,

it’s likely to be polluted with assumptions about what the “page” will look like.

It can be difficult to find skilled developers to build and manage a website.

It may be easier to find generalist JavaScript developers than expert Drupal

developers. The cleanly separated front end of a decoupled site is one way to

ensure the front-end team doesn't have to know anything about Drupal. From

their standpoint, Drupal is just another provider of the JSON they already know

how to consume.

Some large sites have large development teams, and it can be easy for big teams

to get in each other’s way as they build out a site. The front-end team can be

blocked by back-end work that isn’t completed. A decoupled site allows you to

have a clean separation of duties, so, once the API has been determined, the

front and back ends can proceed in parallel to build the site.

SUPPORT FOR MULTIPLE
CONSUMERS

CONTENT REUSE
CAPABILITIES

LESS DRUPAL-SPECIFIC
KNOWLEDGE REQUIRED

EXPEDITED
DEVELOPMENT

8

A modern JavaScript front end can be fast. The JavaScript frameworks used

on many decoupled projects these days are multi-threaded and asynchronous,

making them very speedy. A decoupled site is not automatically faster. You

still need to pay attention to performance issues, but the nature of the

frameworks makes that easier.

Once you have decoupled your site, you could launch a brand new design

without making any changes to the back end, assuming you have a well-

designed API (meaning an API that doesn't include any assumptions about

what the front end looks like). Building a new front end is much less work

than rebuilding the whole site, and it doesn’t require some of the time-

consuming tasks of a full replatforming, like migration.

Challenges of Decoupling

It almost always costs more to decouple than to build a traditional site.

Decoupling requires additional infrastructure and the recreation of solutions

provided by traditional Drupal. We’re still, as a community, figuring out the

best practices so there may be some trial and error in the process of finding

the best solutions.

If you only need a website, decoupling is a convoluted way to accomplish it.

The infrastructure stack is larger and more complex. The cost of building that

more complicated infrastructure only makes sense when you are building

more than just a website, like an API to serve multiple consumers.

ENHANCED
PERFORMANCE

REDUCED COST OF
FUTURE REDESIGNS

INCREASED
DEVELOPMENT COST

INCREASED TECHNICAL
COMPLEXITY

9

You don’t have to decouple to support other applications. Full-stack Drupal

can be used to create a full-featured website that also provides APIs to other

consumers. The website can use all the built-in features of Drupal, while

mobile apps consume and re-distribute content from the site.

Some tasks are particularly tricky in a decoupled environment, like previewing

content before publishing it. In a truly decoupled environment preview makes

no sense anyway. There is no concept of a page on an Alexa app or a smart

refrigerator displaying a recipe, or even on a smartphone app, or a Roku TV.

Content in a truly decoupled application could look totally different than the

webpage, and you can’t preview it because you can’t be sure how it will be used.

Many businesses have page-centric assumptions embedded deep into their

content and processes. It might be uncomfortable for both editors and

management to shift to a mindset where editors create content that might be

deployed in many different combinations and environments, that could be

reused in many ways. Editors won’t be creating “pages”, they will be creating

reusable, well-structured content.

Expanding on that point, many editors are used to being able to control

things like the layout of the page. They expect to be able to rearrange the

page and dictate where in the page their content will appear. Even controlling

the URL of a story is problematic in a decoupled world. Content is placed

by the apps that consume it, not by editors. There are ways to give editors

tools to indicate preferences, and ways to design front ends to respect those

preferences, but it adds complexity to the system.

INCREASED RISK OF
OVER-ENGINEERING

INCREASED TASK
DIFFICULTY

MINDSET SHIFT
REQUIRED

LESS PAGE CONTROL

10

Businesses with many properties have a special problem. Decoupling content

for re-use across multiple sites implies a unified content model across all

those sites. Many multi-site organizations already find it challenging to

standardize their sites. But, without a single content model, there won’t

be a consistent API across the organization. If the content models aren’t

consistent, there will be multiple decoupled systems, which are even more

complicated than a single decoupled system.

Once you are decoupled, you no longer control who is consuming your APIs

or how they're being used. If you make changes to your content model,

you may break things outside of your website. You need to be aware of the

dependencies you’ve created by serving an API.

MULTISITE CHALLENGES

CONTENT MODEL
LOCK-IN

How about some
real-world examples?

The following pages contain examples of ways we at Lullabot have implemented

fully or partially decoupled web architectures using Drupal.

11

NBC
NBC.com is a Drupal 7 site that started life as a Drupal site that output content in a typical way using Drupal's

built-in theme system. It was later retrofitted into a fully decoupled architecture. This transition to a React-

based app was done in stages by utilizing the site's CDN to move URLs over one-by-one to the new front end.

One goal of this re-architecture was to decouple content and presentation. For instance, fields which indicated

very specific layout options such as "this is blue" were abstracted to represent more generic settings, like “which

audience is this for?” This abstraction made it possible for different front-end apps to react to that information

in any way that was appropriate.

12

The API is based upon the RESTful Drupal module. However, the front-end app does not directly consume data

from Drupal. Instead, a Node.js instance sits in front of the API. This architecture is designed to allow other

data from outside Drupal to be aggregated in. It also improves performance, a concern because the site was

not originally designed to be API-first. The back-end APIs are now consumed by more than 20 apps for various

streaming service providers and televisions.

A preview system allows content editors to view what the site will look like at any date in the future by

appending a date to the URL. The front-end app then has the responsibility of passing this date to any APIs it

calls, which in turn utilizes the SPS module to get as-yet unpublished data. This functionality is protected by a

token authentication system (OAuth2 bearer token) to prevent unauthorized users from accessing future data,

as well as allowing penetration of caches to view the content.

https://www.drupal.org/project/restful
https://www.drupal.org/project/sps

13

Hotwire
The travel site Hotwire has a fully decoupled hotel search service. We architected and implemented a Drupal

platform to provide API data to a front-end JavaScript application. Searches for hotels were handled with a legacy

system, but Drupal provided editors with a way to add and manage supplementary metadata about the retrieved

hotel, such as descriptions and photos. This data was then augmented into search results via a REST API.

14

Edutopia
The nonprofit George Lucas Educational Foundation was created by George Lucas to identify and spread

innovative, replicable and evidence-based approaches to helping students from preK to grade 12. As usage on

mobile devices and apps continue to drive expectations, the Foundation wanted more control over the structure

and performance of the front-end user experience. At the same time, they needed Drupal, a mature CMS with a

strong API foundation, to serve content.

15

Previews can be problematic in decoupled applications, and the Edutopia editorial team requires real-time

previews of content as it goes through the production process. We built a system to author or revise content in

Drupal and then view it in their front-end React application with the click of a link. Landing pages can also be

previewed, allowing editors to experiment with potential layouts and different combinations of components

before making them live.

We also shifted from loading full HTML pages with every click to loading only the data that is needed for an

application. A Redux datastore holds the page data in the browser so that when a page is accessed more than once,

the page load is instantaneous. This helps to create a snappy feeling for the website and opens up new options for

the future, such as offline reading and personalization.

READ THE FULL CASE STUDY

https://www.lullabot.com/our-work/building-a-new-edutopia-on-decoupled-drupal-8

16

MSNBC
Although MSNBC used Drupal 7 to render the basic framework of its pages, there was a massive amount of third-

party user data and user-generated content that needed to be woven into the Drupal pages. To accomplish this,

third-party content was retrieved by client-side calls to the external API, then rendered in the browser.

This was done by creating AngularJS blocks which could be placed anywhere on the site. These blocks contained

the initial HTML/Angular template markup and JavaScript to populate themselves with the relevant remote

data. Some blocks allowed users to dynamically select categories and otherwise filter the results from the remote

services, while many others incorporated paging or scrolling and other interactions.

READ THE FULL CASE STUDY

https://www.lullabot.com/our-work/msnbc

17

The Tonight Show
Another decoupled project was a website for the then-new host of The Tonight Show, Jimmy Fallon. This

project consisted of a distributed multi-national, multi-company team of Drupal, Node.js, Backbone, and

editorial experts that created the decoupled site. We discussed how the project was built at DrupalCon, and a

video for that presentation is available online. More information about The Tonight Show project is available in

an article on Lullabot.com entitled Internal API Design for Distributed Teams.

https://austin2014.drupal.org/session/heres-drupal-tonight-tonight-show-jimmy-fallon.html
https://www.lullabot.com/articles/internal-api-design-for-distributed-teams

18

About Lullabot
Lullabot is a strategy, design, and Drupal development company that has created some of the most high-profile and award-winning

websites for large-scale publishers. As one of the first Drupal agencies, Lullabot is highly recognized for their body of work, authentic

approach, and leadership in Drupal innovation, having contributed to more than 150 modules. Lullabot clients include NBC Universal,

Martha Stewart Living, Syfy, Hotwire, GE, Principal Financial Group, Harvard University, and Verizon.

Phone: 1-877-585-5226 // Email: hello@lullabot.com // Website: www.lullabot.com

Still unsure if decoupling is right for you?
Hopefully, this white paper is insightful and useful as you consider whether or not decoupled Drupal is what

your business and your team needs. We know it can be a little overwhelming, so if you have any questions,

please reach out! We’re always happy to provide the answers you’re looking for to make life easier for you.

Additional resources are provided on the following page.

Authored by Karen Stevenson, Director of Technology at Lullabot

mailto:hello%40lullabot.com?subject=
https://www.lullabot.com
https://www.dropbox.com/referrer_cleansing_redirect?hmac=WLgD0FXgvlZ7RlASBr5d42%2FV5xRvC%2BsgheCEm%2BJYApA%3D&url=https%3A%2F%2Fwww.lullabot.com%2Fcontact
https://www.dropbox.com/referrer_cleansing_redirect?hmac=pCcXRO6wePiRko5mka5rKDT08Ck0P1%2FU59%2BP75a%2BbgU%3D&url=https%3A%2F%2Fwww.lullabot.com%2Fabout%2Fkaren-stevenson

19

LULLABOT RESOURCES

 � Beyond Decoupling, The Inherent Virtues of

an API - a discussion of the importance of API

design in a successful decoupled project.

 � Decoupled Drupal Hard Problems: Routing

- there are many tendrils that begin when we

separate our routes and paths from a more

traditional Drupal setup, especially if we need

to think about routing across multiple different

consumers.

 � Decoupled Drupal Hard Problems: Image Styles

- Our HTTP API serves an unknown number of

consumers, but we don't want to expose all image

styles to all consumers for all images.

 � The Hidden Costs of Decoupling - Decoupled

Drupal has been well understood at a

technical level for many years now. While the

implementation details vary, most Drupal

teams can handle working on decoupled

projects. But there are additional costs.

 � Should you Decouple?

 � Drupal JavaScript Initiative: The Road to a

Modern Administration UI

 � Will JavaScript Eat the Monolithic CMS?

OTHER RESOURCES AND TOOLS

Drupal core is enabling this activity through a couple

of core initiatives:

 � The API-first Initiative, which is focusing on

providing the APIs needed for alternative front

ends and other consumers of Drupal’s content.

 � The JavaScript Modernization Initiative,

which is working on creating a decoupled

JavaScript-based editorial interface.

Drupal and the Drupal community have numerous

tools available to assist in creating a decoupled site:

 � Contenta, a pre-configured decoupled Drupal

distribution.

 � Waterwheel, an emerging ecosystem of

software development kits (SDKs) built by the

Drupal community.

 � JSON API, an API that allows consumers to

request exactly the data they need, rather

than being limited to pre-configured REST

endpoints.

 � GraphQL, another API that allows consumers to

request only the data they want while combining

multiple round-trip requests into one.

https://www.lullabot.com/articles/beyond-decoupling-the-inherent-virtues-of-an-api
https://www.lullabot.com/articles/beyond-decoupling-the-inherent-virtues-of-an-api
https://www.lullabot.com/articles/decoupled-hard-promblems-routing
https://www.lullabot.com/articles/decoupled-drupal-hard-problems-image-styles
https://www.lullabot.com/articles/the-hidden-costs-of-decoupling
https://www.lullabot.com/articles/should-you-decouple
https://www.lullabot.com/articles/drupal-javascript-initiative-the-road-to-a-modern-administration-ui
https://www.lullabot.com/articles/drupal-javascript-initiative-the-road-to-a-modern-administration-ui
https://www.lullabot.com/articles/will-javascript-eat-the-monolithic-cms
https://www.drupal.org/project/ideas/issues/2757967
https://www.drupal.org/project/drupal/issues/2926656
https://www.contentacms.org/
https://github.com/acquia/waterwheel.js
https://www.drupal.org/project/jsonapi
https://www.drupal.org/project/graphql

	What is decoupled Drupal?
	Should you decouple?
	How about some real-world examples?

